《定义与命题》平行线的证明PPT课件下载(第1课时)
北师大版八年级数学上册《定义与命题》平行线的证明PPT课件下载(第1课时),共26页。
学习目标
1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式.(重点)
2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)
讲授新课
知识点1 定义
根据上面的情境,你能得出什么结论?
交流必须对某些名称和术语有共同的语言认识才能进行.
要对名称和术语的含义加以描述,作出明确规定.也就是给出它们的定义.
你还能举出曾学过的“定义”吗?
1.无限不循环小数称为无理数;
2.两条边相等的三角形叫作等腰三角形;
3.能够完全重合的两个三角形叫作全等三角形;
4. 一般的,如果在某个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y有唯一确定的值与它对应,那么我们称y是x的函数.
命题
下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流.
1.任何一个三角形一定有一个角是直角;
2.对顶角相等;
3.无论n为怎样的自然数,式子n2-n+11的值都是质数;
4.如果两天直线都和第三条直线平行,那么这两条直线也互相平行;
5.你喜欢数学吗?
6.作线段AB=CD.
命题的概念
像这样判断一件事情的语句,叫作命题(statement).
典例精析
例1:下列句子都是命题吗?
(1)熊猫没有翅膀.
如果一个动物是熊猫,那么它就没有翅膀.
(2)对顶角相等.
如果两个角是对顶角,那么它们就相等.
(3)平行于同一条直线的两条直线平行.
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
命题一般都可以写成“如果……那么……”的形式. 反之,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.
观察下列命题:
1.如果两个三角形的三条边对应相等,那么这两个三角形全等;
2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;
这些命题有什么共同的结构特征?
命题一般都可以写成“如果……那么……”的形式.
1.“如果”后接的部分是题设,
2.“那么”后接的部分是结论.
免责声明
该内容由本站网友收集、分享,版权归作者,如有侵权或任何问题,请联系我们立即删除!
如果你觉得本站不错,请将他收藏并介绍给身边朋友!
转载请注明出处!本文地址: http://www.pptxz.com/app/21116.html