《平行线的判定》平行线的证明PPT免费下载
北师大版八年级数学上册《平行线的判定》平行线的证明PPT免费下载,共26页。
学习目标
1.了解并掌握平行线的判定公理和定理.(重点)
2.了解证明的一般步骤.(难点)
讲授新课
知识点1 平行线的判定
公理 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行
定理 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
这个定理可以简单说成:内错角相等,两直线平行.
定理证明
如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b.
证明:∵∠1=∠2 (已知),
∠1=∠3(对顶角相等).
∴∠2= ∠3 .(等量代换).
∴ a∥b(同位角相等,两直线平行).
判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
定理证明
如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
证明:∵ ∠1与∠2互补 (已知),
∴∠1+∠2=180°(互补的定义).
∴∠1= 180°-∠2(等式的性质).
又∵∠3+∠2=180° (平角的定义),
∴∠3= 180°-∠2(等式的性质).
∴∠1=∠3(等量代换).
∴ a∥b(同位角相等,两直线平行).
判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
∵∠1+∠2=180°(已知)
∴a∥b(同旁内角互补,两直线平行)
当堂练习
1.对于图中标记的各角,下列条件能够推理得到a∥b的是( )
A.∠1=∠2
B.∠2=∠4
C.∠3=∠4
D.∠1+∠4=180°
【解析】∠1的对顶角与∠4是同旁内角,若∠1+∠4=180°,可以根据同旁内角互补,两直线平行得到a∥b.
2.如图所示,∠1=75°,要使a∥b,则∠2等于( )
A.75°
B.95°
C.105°
D.115°
【解析】∠1的同位角与∠2互为补角,所以∠2=180°-75°=105°.
免责声明
该内容由本站网友收集、分享,版权归作者,如有侵权或任何问题,请联系我们立即删除!
如果你觉得本站不错,请将他收藏并介绍给身边朋友!
转载请注明出处!本文地址: http://www.pptxz.com/app/21113.html