《平行线的性质》平行线的证明PPT免费课件
北师大版八年级数学上册《平行线的性质》平行线的证明PPT免费课件,共27页。
学习目标
1.理解并掌握平行线的性质公理和定理.(重点)
2.能熟练运用平行线的性质进行简单的推理证明.(难点)
讲授新课
知识点1 平行线的性质
问题1:根据“两条平行线被第三条直线所截,同位角相等”.你能作出相关的图形吗?
问题2:你能根据所作的图形写出已知、求证吗?
两条平行线被第三条直线所截,同位角相等.
已知,如图,直线AB∥CD,∠1和∠2是直线AB、CD被直线EF截出的同位角.
求证:∠1=∠2.
问题3:你能说说证明的思路吗?
证明:假设∠1 ≠ ∠2,那么我们可以过点M作直线GH,使∠EMH= ∠2,如图所示.
根据“同位角相等,两直线平行”,可知GH ∥ CD.
又因为AB ∥ CD,这样经过点M存在两条直线AB和GH都与直线CD平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”相矛盾.
这说明∠1 ≠ ∠2的假设不成立,所以∠1 =∠2.
总结归纳
一般地,平行线具有如下性质:
定理1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
利用上述定理,你能证明哪些熟悉的结论?
两直线平行,内错角相等.
两直线平行,同旁内角互补.
定理2:两条直线被第三条直线所截,内错角相等.
已知:直线a∥b,∠1和∠2是
直线a,b被直线c截出的内错角.
求证: ∠1=∠2.
定理3:两条直线被第三条直线所截,同旁内角互补
已知:直线a∥b,∠1和∠2是直
线a,b被直线c截出的同旁内角.
求证: ∠1+∠2=180°.
总结归纳
公理:
两直线平行,同位角相等.
∵ a∥b, ∴∠1=∠2.
性质定理1:
两直线平行,内错角相等.
∵ a∥b, ∴∠1=∠2.
性质定理2:
两直线平行,同旁内角互补.
∵ a∥b, ∴ ∠1+∠2=1800 .
证明一个命题的一般步骤:
(1)弄清题设和结论;
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
免责声明
该内容由本站网友收集、分享,版权归作者,如有侵权或任何问题,请联系我们立即删除!
如果你觉得本站不错,请将他收藏并介绍给身边朋友!
转载请注明出处!本文地址: http://www.pptxz.com/app/21111.html