《用频率估计概率》概率的进一步认识PPT精品课件
北师大版九年级数学上册《用频率估计概率》概率的进一步认识PPT精品课件,共32页。
旧知回顾
1.甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.若同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数的概率是______
2.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( )
自学互研
用频率估计概率
问题1
投掷一枚质地均匀的硬币时,结果正面向上的概率是多大?
问题2
周末,县体育馆有一场精彩的篮球比赛,小亮手中有一张球票,小强和小明都是班上的篮球迷,两人都想去,小亮很为难,不知给谁,请大家帮小亮想个办法解决这个问题.
问题3
为什么要用投掷硬币的方法呢?
理由:这样做公平.能保证小强和小明得到球票的可能性一样大,即得票概率相同.
问题4
如果掷硬币机会均等,若投掷10次硬币,是否一定是5次正面向上?投掷50次、100次、400次……?
归纳总结
通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.
一般地,在大量重复试验中,随机事件A发生的频率 (这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发生的次数)会稳定到某个常数p.于是,我们用P这个常数表示事件A发生的概率,即P(A)=p.
思考
(1)400位同学中,一定有2人的生日相同(可以不同年)吗?有什么依据吗?
(2)300位同学中,一定有2人的生日相同(可以不同年)吗?
(3)“我认为咱们班50个同学中很可能就有2个同学的生日相同”,你相信吗?
对于问题(1), “一定”,可以用“抽屉原理”加以解释.
例如, “一年最多366天,400个同学中一定会出现至少2人出生在同月同日,相当于400个物品放到366个抽屉里,一定至少有2个物品放在同一抽屉里——抽屉原理:把m个物品任意放进n个空抽屉(m>n),那么一定有一个抽屉中放进了至少2个物品”.
检测反馈
1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
2.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( )
A.6 B.10 C.18 D.20
免责声明
该内容由本站网友收集、分享,版权归作者,如有侵权或任何问题,请联系我们立即删除!
如果你觉得本站不错,请将他收藏并介绍给身边朋友!
转载请注明出处!本文地址: http://www.pptxz.com/app/21022.html